
Analysis of the Capabilities of the Virginia Longitudinal Data System (VLDS) to
support Baseline Distinct Counts of Select Data Sets

to support the Establishment of a
Virginia Early Childhood Integrated Data System (ECIDS)

Principal Investigator
Aaron D. Schroeder, Associate Research Professor, Social and Decision Analytics, Biocomplexity
Institute, University of Virginia

Research Assistant
Devika Nair, Research Scientist, Social and Decision Analytics, Biocomplexity Institute,
University of Virginia

SUMMARY
The goal of this project was to ascertain the capabilities of the Virginia Longitudinal Data
System (VLDS) to support the integration of data to generate a distinct count of children birth
to five served by one or more early childhood programs and/or services, as a foundational
metric for a range of
future early childhood
policy and programmatic
analyses and uses.

The established project
objectives to achieve this
goal were to:

1) produce a data fitness

analysis of assessed
data sets

2) produce analyses and
presentation of basic
demographic
breakdowns over time
for multiple
combinations of the selected early childhood service data sets, and

3) produce an initial composite index, for demonstration purposes, using the produced
distinct counts.

All three objectives were achieved and, as Figure 1 demonstrates, successful integration and
analysis of data relevant to the target population is achievable. In addition, a custom algorithm
for the R programming language was developed to facilitate quick deduplication of these
datasets by others in the future (see Appendix B).

Figure 1 An Example of Unique-Count Cross-Dataset Linkage Possible using the VLDS

However, significant hurdles remain to successfully utilize the VLDS as a basis for a future
Virginia Early Childhood Integrated Data System (ECIDS). The two primary hurdles are 1) that
the VLDS does not currently collect all of the needed data for the target population (this was
already well known going into the study), and 2) the time and effort required to successfully
query, process, and re-query the data system, as is necessary in any investigative process, be it
for policy or research purposes, is significantly onerous. While the people administering the
system are knowledgeable and competent, the time and steps necessary to determine which
data is required as well as the time it takes for a query to make it through a queue with a
continuous backlog, suggest an under-resourcing of the technical infrastructure necessary to
support its increased use as a system to support early childhood policy and program analyses.

BACKGROUND
To understand how policies, services, and supports work for which children at what time,
policymakers need comprehensive data about the accessibility, quality, and effectiveness of
services. The potential value of integrated administrative data systems (IDS) to provide this
crucial policy-relevant data is increasing (Fantuzzo & Culhane, 2016). This
is particularly relevant for the establishment and continuous evaluation of public programs
focused on young children ages 0-5, a group for whom services are historically fragmented and
disconnected from systems serving school-aged children, and siloed among health, human
services, and education agencies.

Accordingly, the Virginia Early Childhood Foundation (VECF) is investigating the potential for
establishing an Early Childhood Integrated Data System (ECIDS) to collect, store, integrate, and
maintain data from early childhood programs across multiple agencies within the state. The
combined information from a Virginia ECIDS can be used to inform service delivery, public
policy, and future investments to ensure all children have access to the supports they need to
succeed in school and in life.

In developing a Virginia ECIDS, a first necessary step is to ascertain what aspects of an ECIDS
may be provided by already established and supported data systems. The goal of this study is
to determine the current ability of the Virginia Longitudinal Data system (VLDS) to support
the generation of a distinct count of children, birth to five, served by one or more early
childhood programs and/or services, as a foundational metric for a range of future early
childhood policy and programmatic analyses and uses.

Funded by the 2009 Statewide Longitudinal Data Systems Grant Program of the United States
Department of Education, the Virginia Longitudinal Data system (VLDS) was established to
provide a cost-effective mechanism for extracting, shaping and analyzing partner agency data
in an environment that ensures the highest levels of privacy. State agencies currently
participating in the VLDS include the Virginia Department of Education (VDOE), the State
Council of Higher Education for Virginia (SCHEV), the Virginia Employment Commission (VEC),
the Virginia Department of Social Services (VDSS), the Virginia Community College System

(VCCS), the Virginia Department for Aging and Rehabilitative Services (DARS), and Virginia
Department of Health Professions (DHP).

PROJECT TASKS TO COMPLETE OBJECTIVES
The tasks completed to achieve the project objectives were:

1) Work with VECF and partners to derive most desired/useful counts to be provided
2) Work with VLDS contributors to determine most appropriate data sets

a) Understand data processing procedures, and attendant issues, used by data providers to create the unique
demographic log required by the VLDS

b) Select the optimal combination of data sets balancing potentially desired/useful counts with an understanding
of the data quality and fitness

c) Profile the fitness (quality, structure, metadata, duplication, etc) of the data sets as provided by the VLDS to
provide the necessary demographics and other requested measures for analysis

d) Secure access to data provider records and conduct deterministic and probabilistic de-identification analyses
to establish rough error estimates for each demographic log to be used in the project

3) Query Construction - Derive and verify queries for selecting distinct counts
a) Distinct counts by race, gender, age, economic status, and location for each selected EC services over

multiple time periods (e.g. months, years)
b) Distinct counts for each combination of the selected EC services over multiple time periods which may

encompass difference subsets of both children and programs
c) Execute queries and verify counts produced vs counts expected given previous analysis of rough

errors existing in the provided demographic logs

Initial Dataset Selection and Filtering

Initial dataset and field selection were guided by the objective of finding the best available
demographic information to specify who, what, when, and where of service receipt across
agencies. The following table shows the datasets and specific demographic fields under
consideration with Information on children 0-5 years of age.

Figure 2 Combining and Deduplicating Across Sources

Datasets and field under consideration for demographic information

SPECIFIED DATA FILTERS
The datasets were queried using the following filters to narrow the selections to the target
population.

• DOE|Unique Students Listing|School Year greater than 2012
• And DOE|Unique Students Listing|Grade Code in list JK,KA,KG,KP,PK,T1,TT,UG
• And DOE|VPI+|Birth Year greater than 2007
• And OCS|OCS Services By Year|Program Year greater than 2012
• And DSS|DSS Customers By Year|Calender Year number greater than 2012

ISSUES EXPERIENCED IN ACQUIRING DATASETS
• Working with the VLDS interface for data selection and extraction is very onerous.
• Although the datasets are previously linked, it is not possible to limit a search by criteria on

one of the datasets only. Each dataset must have criteria set. However, each dataset does
not have the same available criteria.

• Additionally, the system only allows for viewing of sample data responses from the first
dataset with criteria set. After setting additional criteria on the additional datasets, the
system responds that No Records are found. This is not actually the case and you do not
know how many records will result until the system actually returns a data package in a day
or two.

• To get to a useable set of data tables to begin to answer a research question, a guessing
game has to be pursued with many days wait in-between guesses.

• Additionally, if the query has been too broadly defined (too many records have been
requested), an error will be returned and the researcher will need to begin attempting to
reduce the size of the query, which is a guessing game in and of itself.

COMPLETED PROJECT OBJECTIVES

Produce data fitness analysis of assessed data sets

We have determined that while there are some issues in demographic quality over time in the
VDOE, VDSS and OCS data, the issues are small and would not detract from the ability to link
the data and have the linked data be used to analyze demographic patterns of children over
time. Also, because much of the data that will be coming into the system for kids 0-5 is going to
be newly generated data, it is expected that the quality of these collections will be generally
high, certainly no lower.

An example of the data profiling conducted to assess fitness for use is shown here for the
dataset “DSS Customers by Year” provided by VDSS to the VLDS. Additional data profiling
results can be seen in Appendix A.

A general note of DSS dataset structures encountered

For those working with these datasets in the future, it is important to note that DSS
“Individual by Year” datasets are actually “Individual by Year by Location”.
For example, SNAP and TANF Customer Records by Year are actually Customer Records by Year
AND by "Location", so multiple records per customer occur if a customer received benefits in
more than one FIPS code or zip code in a calendar year. As a single record is needed per
customer per year for linkage purposes, additional columns must be created to account for all
possible locations. The number of columns added is based on the customer with the highest
number of locations in a single year. In this case it is six, but the code automatically determines
the number. An example of the resulting location record individuals can be seen below.

DATASET PROFILE: DSS CUSTOMERS BY YEAR

Dataset Preparation

Provided datasets are often vastly different from each other in terms of both schema and
structure. To prepare for data profiling, dataset fields are checked for spelling errors and
converted to a standardized format. If the dataset does not provide records at the level of
aggregation required (e.g. each row is unique for a person and year) then the dataset is
restructured.

Task: Preparation of Field/Column Names

Field/Column names standardized.

fields_original fields_prepared
Unique ID unique_id
Age Class Code age_class_code

Age Group Code age_group_code
Age Type Code age_type_code
Calender Year number calendar_year_number
Customer race is Black indicator customer_race_is_black_indicator
Customer race is Asisan indicator customer_race_is_asisan_indicator
Cust race is Hawaiian/Pacific Islander ind cust_race_is_hawaiian_pacific_islander_ind
Cust race is Amer Indian/Alaska Native Ind cust_race_is_amer_indian_alaska_native_ind
Customer race is White indicator customer_race_is_white_indicator
Customer race is Other indicator customer_race_is_other_indicator
Foster Care case Indicator foster_care_case_indicator
Ethnicity Code ethnicity_code
Gender Code gender_code
Month of Birth month_of_birth
SNAP Case Indicator snap_case_indicator
TANF Case indicator tanf_case_indicator
Year of Birth year_of_birth

Task: Restructuring of Dataset to Required Level of Aggregation

No restructuring was required for this dataset.

Uniqueness

The concept of data uniqueness can be generalized as the number of unique valid values that
have been entered in a record field, or as a combination of record field values within a dataset.
Uniqueness is not generally discussed in terms of data quality, but for the purposes of
answering research questions, the variety and richness of the data is of paramount importance.
Most notably, if a record field has very little value uniqueness (e.g. entries in the field ‘State’ for
an analysis of housing within a county, which of course would be within a single state), then its
utility would be quite low and can be conceptualized as having low quality in terms of the
research question at hand.

Test: Numerical Frequencies

There were no numerical items in this dataset

Test: Categorical Frequencies

Assessing the breakdown of the frequency of categorical variables can be very informative
when selecting appropriate fields for linkage and/or analysis. For example, as can be seen in
Figure 2, when selecting a field to best serve as the “age” variable from this dataset it becomes
instantly clear that ‘age_class_code’ and ‘age_type_code’ are not appropriate for this use as
they only contain one (“1”) and two values (“1”, “2”), respectively. The field ‘age_group_code’,
however, appears much more suitable as it is comprised of a distinct value for each year of age.

Completeness

The concept of data completeness can be generalized as the proportion of data provided versus
the proportion of data required. Data that is missing may additionally be categorized as record
fields not containing data, records not containing necessary fields, or datasets not containing
the requisite records. The most common conceptualization of completeness is the first, record
field not containing data. This conceptualization of data completeness can be thought of as the
proportion of the data that has values to the proportion of data that ’should’ have values. That
is, a set of data is complete with respect to a given purpose if the set contains all the relevant
data for that purpose.

Figure 3 Breakdown of Categorical Values per Data Field

Test: Record Completeness (The Number of Records with Empty Values in a Field/Column)

rows_with_empties
0

Test: Item Completeness (The Number Cells Missing Values in each Field/Column)

item empties
unique_id 0
age_class_code 0
age_group_code 0
age_type_code 0
calendar_year_number
cust_race_is_amer_indian_alaska_native_ind
cust_race_is_hawaiian_pacific_islander_ind
customer_race_is_asisan_indicator
customer_race_is_black_indicator
customer_race_is_white_indicator
customer_race_is_other_indicator
ethnicity_code
foster_care_case_indicator
gender_code
month_of_birth
snap_case_indicator
tanf_case_indicator
year_of_birth

0
0
0
0
0
0
0
0
0
0
0
0
0
0

Valid Values

The concept of value validity can be conceptualized as the percentage of elements whose
attributes possess expected values. The actualization of this concept generally comes in the
form of straight-forward domain constraint rules.

Test: Count and Percentage of Invalid Values in each Field/Column

From a quick analysis of the graphs below it can be seen that the demographic fields in this
dataset are maintained at a very high level in terms of the validity of the values stored with a
score of 100% for almost all. A small number of invalid values were detected, however, in the
field ‘ethnicity’. This number represents approximately 6.8% of the values stored in that field.
However, having 93% valid values is still relatively high and this field may still serve as a decent
indicator of ethnicity.

Figure 4 Count and Percentage of Individuals with Invalid Values

dataset: DSS Customers by Year

Longitudinal Consistency (Unexpected Changes in Demographics)

Longitudinal Consistency refers to a check for inconsistency in the data when checked over
time (longitudinally), to see if the same value is recorded for every new record when it should
be (i.e. birthdate and other demographics). Causes of longitudinal inconsistency are varied, but
a common source of inconsistency comes from situations where locally derived information is
provided with no associated master list or file. An exhaustive ‘master list’ of individuals
receiving a public service are, in fact, quite rare. Many times, demographics are recorded in
multiple records about the same individual, sometimes in the same time period. In these cases,
truth must be derived from the aggregation of multiple observations.

Test: Count and Percentage of Individuals with Multiple Values per Demographic Item

While a small number of fluctuating demographic values are detected in this dataset, the
respective percentages are fairly low and it is expected that they are manageable using
standard deduplication approaches.

Figure 5 Count and Percentage of Individuals with Multiple Values per Demographic Item
dataset: DSS Customers by Year

Produce analyses and presentation of basic demographic breakdowns over time
for all combinations of the select EC service data sets.

For the data sources we were able to link and pull (VDOE student record, VDSS services by year,
OCS services), restructuring the data and the creation of deduplicated demographic
breakdowns over time was straight-forward, presenting only issues normally experienced in
such exercises. There isn’t much data yet for some (OCS), but it’s clear that it’s not only
possible to deduplicate and link the data sets to create unduplicated counts, but that such
linkage could prove quite useful.

For example, we can now produce cross-tabulations of distinct counts across multiple services
over time.

Figure 6 Excerpt from Distinct Count Cross-Tabulation, Service by Race/Ethnicity by Year

datasets: SNAP, TANF, FOSTER, OCS

As well as distinct count graphs.

Figure 7 Individuals receiving both VDSS SNAP and OCS Services by Race and Ethnicity

And we can now visualize counts across geographies.

Produce an initial composite index, for demonstration purposes, using the
produced distinct counts.

In terms of demonstrating how such deduplication and linkage may prove useful, we created an
initial scaled composite index combining nutritional and behavioral assistance rates per county
in Virginia. The code for producing this index can be found in Appendix C.

Figure 8 Count of Individuals Receiving SNAP and Part B Benefits 2015
datasets: DSS Customers by Year, DOE Student Records

Figure 9 Example of Composite Index Constructed Using VLDS Distinct Count Linked Data

APPENDIX A – DATASET PROFILE SAMPLES

APPENDIX B – APPLICATION OF DEDUPLICATION ALGORITHM FOR DOE STUDENT

RECORD DEMOGRAPHICS

Ingest DOE Student Record Demographics

LOAD LIBRARIES AND FUNCTIONS
library(data.table)
library(dataplumbr)
library(here)
library(inspectdf)
library(maditr)

DOE Student Record Demographics

LOAD DATA FILE
doe_student_records <- fread(here("data/original/q5/DOE/Student Records.csv")
, colClasses = "character")

STANDARDIZE COLUMN NAMES
colnames(doe_student_records) <- name.standard_col_names(colnames(doe_student
_records))

CHECK IF MORE THAN ONE RECORD PER UNIQUE_ID AND CALENDAR_YEAR
multiples <- nrow(doe_student_records[, .N,.(unique_id, school_year)][N > 1])
multiples

[1] 2810

APPLY DEDUPLICATION ALGORITHM TO GET DEMOGRAPHICS BY YEAR
doe_student_dmgs <- doe_student_records[, .(birth_month, birth_year, race_typ
e, ethnic_flag, prek_funding_code),.(unique_id, school_year)]

set.dedup_choice <- function(df) {
 dt <- data.table::setDT(df)
 for (j in colnames(dt)) {
 data.table::set(dt, j = j, value = dt[get(j) != "", .N, j][order(-N)]
[, ..j][1])
 }
 dt[1]
}

set.dedup_choice_by_key <- function(df, key = "uid") {
 if (exists("out_dt") == TRUE) rm(out_dt, envir = globalenv())

 dt <- data.table::setDT(df)
 unique_keys <- unique(dt[, get(key)])

 key_cnt <- length(unique_keys)
 pb <- progress::progress_bar$new(format = "[:bar] :current/:total :percen
t eta: :eta", total = key_cnt)

 for (k in unique_keys) {
 pb$tick()
 g <- dt[get(key)==k]
 r <- set.dedup_choice(g)
 if (exists("out_dt") == FALSE) out_dt <- r else out_dt <- rbindlist(l
ist(out_dt, r))
 }

 out_dt
}

doe_student_dmgs_dedup <- set.dedup_choice_by_key(doe_student_dmgs, "unique_i
d")

verify only one code per id per year
nrow(doe_student_dmgs_dedup[, .N, .(unique_id)][N > 1])

[1] 0

WRITE TO CSV
fwrite(doe_student_dmgs_dedup, here("data/working/DOE/doe_student_records_by_
year_dmgs_prek.csv"))

APPENDIX C – CODE TO GENERATE COMPOSITE INDEX

LOAD	LIBRARIES	
library(data.table)

library(dataplumbr)

library(tidycensus)

library(sf)

library(ggplot2)

library(here)

library(knitr)

library(kableExtra)

DSS	RECORDS	
Load DSS records and standardize column names

dss_customers_by_year <- fread(here("data/original/q4/DSS/DSS Customers By Ye
ar.csv"), colClasses = "character")

colnames(dss_customers_by_year) <- standard_col_names(colnames(dss_customers_
by_year))

fix a misspelling for future joining

colnames(dss_customers_by_year)[colnames(dss_customers_by_year) == "calender_
year_number"] <- "calendar_year_number"

subset to just the data columns needed

dss_customers_by_year_sub <-

 dss_customers_by_year[, .(unique_id,

 calendar_year_number,

 snap_case_indicator,

 tanf_case_indicator,

 foster_care_case_indicator)]

print table

kable(dss_customers_by_year[1:4]) %>% kable_styling() %>% scroll_box(width =
"910px")

OCS	RECORDS	
Load OCS records and standardize column names

ocs_services_by_year <- fread(here("data/original/q4/OCS/OCS Services By Year
.csv"), colClasses = "character")

Warning in fread(here("data/original/q4/OCS/OCS Services By Year.csv"), :

Discarded single-line footer: <<ZKAUQQQ,D,1644259,2,>>

colnames(ocs_services_by_year) <- standard_col_names(colnames(ocs_services_by
_year))

Group the OCS service records by year to create a single record per customer per year

ocs_customers_by_year <- ocs_services_by_year[, .(ocs_service_entries = .N),
.(unique_id, program_year)]

print table

kable(ocs_customers_by_year[1:4]) %>% kable_styling() %>% scroll_box(width =
"910px")

unique_id program_year ocs_service_entries

MZ4CQQQ 2016 2

2942AQQ 2016 2

K929QQQ 2016 1

GHCHQQQ 2016 2

Join	the	DSS	and	OCS	records	
colnames(ocs_customers_by_year)[colnames(ocs_customers_by_year) == "program_y
ear"] <- "calendar_year_number"

dss_ocs_cust_by_year <- merge(dss_customers_by_year_sub, ocs_customers_by_yea
r, by = c("unique_id", "calendar_year_number"), all.x = TRUE)

add a service indicator variable for later use

dss_ocs_cust_by_year[!is.na(ocs_service_entries), ocs_indicator := "Y"]

dss_ocs_cust_by_year[is.na(ocs_service_entries), ocs_indicator := "N"]

SNAP	RECORDS	
Load SNAP records and standardize column names

snap_cust_by_loc_year <- fread(here("data/original/q4/DSS/DSS SNAP Customers
by Year.csv"), colClasses = "character")

colnames(snap_cust_by_loc_year) <- standard_col_names(colnames(snap_cust_by_l
oc_year))

SNAP	records	are	actually	Customer	by	Year	by	“Location”,	
so	multiple	records	per	customer	
if they received benefits in more than one fips code or zip code. As a single record is needed per
customer, additional columns must be created to account for all possible locations. The number of
columns added is based on the customer with the highest number of locations in a single year. In
this case it is six, but the code automatically determines the number.

each county fips code gets it's own column, each zip code gets its own colu
mn

snap_cust_by_loc_year[, county_fips_code_no := paste("county_fips_code", seq_
len(.N), sep="_"), by=c("unique_id", "study_group_id", "calendar_year_number"
)]

snap_cust_by_loc_year[, zip_code_no := paste("zip_code", seq_len(.N), sep="_"
), by=c("unique_id", "study_group_id", "calendar_year_number")]

fips <- dcast(snap_cust_by_loc_year, unique_id + study_group_id + calendar_ye
ar_number ~ county_fips_code_no, value.var=c("county_fips_code"))

zips <- dcast(snap_cust_by_loc_year, unique_id + study_group_id + calendar_ye
ar_number ~ zip_code_no, value.var=c("zip_code"))

snap_cust_by_year <- merge(fips, zips, by=c("unique_id", "study_group_id", "c
alendar_year_number"))

print table

kable(snap_cust_by_year[!is.na(county_fips_code_5)][order(-county_fips_code_6
)][1:25]) %>% kable_styling() %>% scroll_box(width = "100%")

Join	the	DSS,	OCS	and	SNAP	records	
dss_ocs_snap_cust_by_year <- merge(dss_ocs_cust_by_year, snap_cust_by_year, b
y = c("unique_id", "calendar_year_number"), all.x = TRUE)

dss_ocs_snap_cust_by_year <- dss_ocs_snap_cust_by_year[!is.na(county_fips_cod
e_1)]

ocs_snap_cnt_fips_by_year <- dss_ocs_snap_cust_by_year[, .N, c("county_fips_c
ode_1", "calendar_year_number")]

print table

kable(ocs_snap_cnt_fips_by_year[1:4]) %>% kable_styling() %>% scroll_box(widt
h = "910px")

Get	population	by	county	by	year	for	Virginia	
va_pop_co_2013 <- data.table::setDT(tidycensus::get_acs(geography = "county",
variables = "B01001_001", state = "VA", year = 2013))

va_pop_co_2013[, year := "2013"]

colnames(va_pop_co_2013)[colnames(va_pop_co_2013) == 'estimate'] <- 'estimate
_2013'

va_pop_co_2013 <- va_pop_co_2013[, .(GEOID, estimate_2013, year)]

va_pop_co_2014 <- data.table::setDT(tidycensus::get_acs(geography = "county",
variables = "B01001_001", state = "VA", year = 2014))
va_pop_co_2014[, year := "2014"]
colnames(va_pop_co_2014)[colnames(va_pop_co_2014) == 'estimate'] <- 'estimate
_2014'
va_pop_co_2014 <- va_pop_co_2014[, .(GEOID, estimate_2014, year)]
va_pop_co_2015 <- data.table::setDT(tidycensus::get_acs(geography = "county",
variables = "B01001_001", state = "VA", year = 2015))
va_pop_co_2015[, year := "2015"]
colnames(va_pop_co_2015)[colnames(va_pop_co_2015) == 'estimate'] <- 'estimate
_2015'
va_pop_co_2015 <- va_pop_co_2015[, .(GEOID, estimate_2015, year)]

va_pop_co_2016 <- data.table::setDT(tidycensus::get_acs(geography = "county",
variables = "B01001_001", state = "VA", year = 2016))
va_pop_co_2016[, year := "2016"]
colnames(va_pop_co_2016)[colnames(va_pop_co_2016) == 'estimate'] <- 'estimate
_2016'
va_pop_co_2016 <- va_pop_co_2016[, .(GEOID, estimate_2016, year)]

Combine	Population	Counts	for	Each	Year	
colnames(ocs_snap_cnt_fips_by_year) <- c("GEOID", "year", "N")

ocs_snap_cnt_fips_by_year[, GEOID := paste0("51", GEOID)]

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2013,
by = c("GEOID", "year"), all.x = T)

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2014,
by = c("GEOID", "year"), all.x = T)

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2015,
by = c("GEOID", "year"), all.x = T)

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2016,
by = c("GEOID", "year"), all.x = T)

ocs_snap_cnt_fips_by_year[, pop_est := gsub("NA", "", paste0(estimate_2013, e
stimate_2014, estimate_2015, estimate_2016))]

Create	Index	“Idx”	as	the	count	of	those	with	
both	SNAP	and	OCS	in	a	county	for	a	particular	
year	
ocs_snap_cnt_fips_by_year <- ocs_snap_cnt_fips_by_year[, .(GEOID, year, snap_
plus_ocs = N, pop_est, idx = N/as.numeric(pop_est))]

print table

kable(ocs_snap_cnt_fips_by_year[1:4]) %>% kable_styling() %>% scroll_box(widt
h = "910px")

Create	the	Nutritional	-	Behavioral	Index	Map	
Download the Geography

va_geo <- tidycensus::get_acs(geography = "county", variables = "B01001_001",
state = "VA", year = 2016, geometry = TRUE)

Chose year to map and create a standardized index from 0 to 1

Combine the data and geography and create the map

va_geo_idx_2013 <- merge(va_geo, idx_2013, by = "GEOID")

ggplot(data = va_geo_idx_2013) +
geom_sf(aes(fill = idx_z)) +
ggtitle("Nutrition plus Behavioral Assistance", subtitle = "(scaled per capit
a per county)") +
theme(panel.grid.major = element_line(color = gray(0.5), linetype = "dashed",
size = 0.5), panel.background = element_rect(fill = "aliceblue"))

