Repurposing Administrative Data for Statistical Purposes

Aaron D. Schroeder, Ph.D.
Senior Data Research Scientist
Social & Decision Analytics Lab
Biocomplexity Institute of Virginia Tech
Every Repurposing Is a New “Investigation”

• Locating the Data Repurposing Discussion
• Overview of the SDAL “Investigative Process” for Repurposing Data
• Recommendations for Research-Enabling Standards for Integrated Administrative Data Systems to Aid Future Investigations
Data Repurposing
Locating the Discussion

Secure/Privacy-Protecting Linkage

FISMA

Dataset

DFARS

Dataset

HIPPA

Dataset

DFARS

Dataset

HIPPA

Dataset

FERPA

Dataset

State Law

Specific Question

DATA GOVERNANCE
SDAL
Data Science Processes & Platforms for Evidence-Based Policy

- Data Analytics Process
 - **Data Fitness Analysis**
 - Data Analysis & Hypothesis Testing
 - Creation of Community Data Tools

- Data Fitness Analysis
 - **Profiling**
 - Preparation
 - Linkage
 - Exploration & Assessment
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**

Structure, Quality, Metadata & Provenance

Missing Variables
values in column headers instead of variable names
- e.g. Value-ranges being used as column headers (0-9|10-19|20-29|...)

Combined Variables
more than one variable represented in a attribute (column) value
- e.g. An attribute combining gender and age (m25, f32,...)

Multiple Observation Directions
variables in both columns and rows
- e.g. A dataset with an element(column) for each day of the month (horizontal) and an element(column) for 'month' (vertical)
 - note. the messiest and can be dealt with multiple ways according to the needs of the specific analysis

Combined Observation Unit Types
more than one observation unit type per table
- e.g. A table containing both individual demographic data and a periodic measurement like weekly attendance where demographic data and weekly attendance are separate observational units and need to be in separate datasets.

Divided Observation Unit Type
observation unit type is split among multiple tables
- e.g. Individual demographic information split among several datasets; for example, separate tables for gender, ethnicity, and surname.
This is a single record with 128 fields all keyed to the variable “List Number”.

Structured this way, it is not possible to analyze property changes over time.

Pulling out a definitive list of unique properties using “Parcel ID” seems like a possibility.

However, “Parcel ID” is left blank in over 7% of entries – extra work required – perhaps including address, but address is not standardized.
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**

Structure, Quality, Metadata & Provenance

Combined Observation Unit Types

Ideal Restructuring of MLS Data

- Property Characteristics
- Property Sales Information
- Property Tax Information
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**

Structure, Quality, Metadata & Provenance

Divided Observation Unit Types

<table>
<thead>
<tr>
<th>gender1</th>
<th>id</th>
<th>gender2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>43XXX13</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>43XXX14</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>76XXX46</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>74XXX98</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>76XXX23</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>77XXX40</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>74XXX98</td>
<td>F</td>
</tr>
<tr>
<td>M</td>
<td>78XXX73</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>78XXX74</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>77XXX84</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>79XXX87</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>71XXX95</td>
<td>F</td>
</tr>
<tr>
<td>M</td>
<td>21XXX96</td>
<td>F</td>
</tr>
<tr>
<td>M</td>
<td>71XXX54</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>71XXX55</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>77XXX86</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>80XXX24</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>76XXX79</td>
<td>F</td>
</tr>
</tbody>
</table>

NC Student Data

Demographics Recorded in Multiple Tables

- Actual 2011 data from different tables linked via unique ID
- Many more tables with apparently separately collected demographics
- Derivation of Demographic Truth is now Probabilistic
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**
Structure, **Quality**, Metadata & Provenance

Completeness
percentage of elements properly populated
- e.g. Testing for NULLS and empty strings where not appropriate

Value Validity
percentage of elements whose attributes possess meaningful values
- e.g. A comparison constraint like \{male; female\} or an interval constraint like \[0,110\]

Consistency
a measure of the degree to which two or more data attributes satisfy a well-defined dependency constraint — relationship validation
- e.g. Zip-code — state consistency or gender — pregnancy consistency

Uniqueness
the number of unique values taken by an attribute, or a combination of attributes in a dataset
- e.g. Frequency distribution of an element note. The more homogeneous the data values of an element, the less useful the element is for analysis

Duplication
a measure of the degree of replication of distinct observations per observation unit type
- e.g. Greater than 1 registration per student per official reporting period note. Duplication occurs as a result of choice of level of aggregation
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**
Structure, **Quality**, Metadata & Provenance
Completeness

- Seems straight-forward -- Nope
- A set of data is complete with respect to a *given purpose* if the set contains all the relevant data for that purpose
- A common measure is the proportion of data that has values to the proportion that “should” have values.
 - Completeness is *application-specific*
 - Incorrect to simply measure number of missing field values in a record without considering which fields are necessary
 - MLS Data had MANY highly incomplete fields that were not necessary for the study at hand
- Data that are missing can be categorized as:
 - record fields not containing data
 - records not containing necessary fields
 - datasets not containing the requisite records
Repurposing Data for Statistical Purposes

Data Fitness Analysis: Profiling
Structure, Quality, Metadata & Provenance
Value Validity

- Data elements with proper values have **value validity**
- The percentage of data elements whose attributes possess values within the range expected for a legitimate entry is a measure of value validity
- Checking for value validity generally comes in the form of straight-forward domain constraint rules
 - How many entries contain non-valid values for a non-empty text field representing gender?
 - `<count gender where gender is not (male, female)>`
 - How many entries contain non-valid values for a non-empty integer field representing age?
 - `<count age where age is not between [0, 110]>`
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**
Structure, **Quality**, Metadata & Provenance
Value Validity

Pulled from current James City County MLS Data

<table>
<thead>
<tr>
<th>zip_code</th>
<th>area</th>
<th>subdivision</th>
<th>neighborhood</th>
<th>zoning</th>
<th>parcel_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>23185</td>
<td>JCC</td>
<td>Governors Land</td>
<td>River Reach</td>
<td>R-4</td>
<td>4511000022</td>
</tr>
<tr>
<td>23188</td>
<td>JCC</td>
<td>Wellington</td>
<td></td>
<td>RESIDENT</td>
<td>1330800178</td>
</tr>
<tr>
<td>23188</td>
<td>JCC</td>
<td>Powhatan Secondary</td>
<td></td>
<td>RES</td>
<td>3741600013</td>
</tr>
<tr>
<td>23185</td>
<td>JCC</td>
<td>Kingsmill</td>
<td>Padgetts Ordinary</td>
<td>R 4</td>
<td>5041100213</td>
</tr>
<tr>
<td>23185</td>
<td>JCC</td>
<td>Pointe @ Jamestown</td>
<td></td>
<td>RES</td>
<td>4640600108</td>
</tr>
<tr>
<td>23185</td>
<td>JCC</td>
<td>Paddock Green</td>
<td>Paddock Green</td>
<td>R1</td>
<td></td>
</tr>
</tbody>
</table>

Comparison constraint: **zoning 2015, James City County** = \{A-1, R-1, R-2, R-3, R-4, R-5, R-6, R-7, R-8, LB, B-1, M-1, M-2, RT, PUD, MU, PL, EO\}

- During Data Profiling issues are described, not “fixed”
- The appropriate fix depends upon the needs of the research
- It may be appropriate to simply normalize all zoning entries to the five major categories of zoning: Residential, Mixed Residential-Commercial, Commercial, Industrial, and Special
Repurposing Data for Statistical Purposes

Data Fitness Analysis: Profiling
Structure, Quality, Metadata & Provenance
Consistency

- The Degree to Which Two or More Attributes Satisfy a Dependency Constraint
- Simple example
 - Location disagreements like zip and state (Record-Level)
- More complex example (Longitudinal)
 - Consistency with locally derived “truth”
 - VDOE Student Record, no definitive list of student demographics
 - Truth must be derived from multiple observations
 - Student Record has multiple observations per school year
 - Query here shows disagreement on gender for some of the observations when Student Record is matched to itself
 - select count(distinct a.internal_id) from vdoe.student_record a
 join vdoe.student_record b on a.internal_id = b.internal_id
 and a.gender <> b.gender
 - 16,310 / 2,346,058 individuals have more than one value for gender
Repurposing Data for Statistical Purposes

Data Fitness Analysis: **Profiling**
Structure, Quality, **Metadata & Provenance**

Observation Unit Definition
Datasets (tables) without definition and/or non-meaningful/confusing naming

Observation Unit Attributes Definition
Attributes (columns) without definition and/or non-meaningful/confusing naming

Semantic Confusion
Attributes with the same name but different definitions
- e.g. An attribute named “Grade” can refer to both a ‘score’ for a test or the ‘level/year’

Multiple Attribute Names
Attributes with different names but the same definition
- e.g. Attributes name “Grade” and “Year” both referring to ‘level/year’ of schooling

Inconsistent Attribute Formats
Attributes of the same type that are formatted differently
- e.g. Most commonly an issue when dealing with dates and times

Data Process History
Attributes collected at different locations, with different tools

System of Origin
Where was this data originally collected?

Intermediate Storage Systems
Chain of Custody

Contact Information
Who can I contact with my questions?

Transformation
What happened to the data since collection and why?

Getting this stuff in order is a BIG part of Data Repurposing!
Research-Enabling Standards for Integrated Administrative Data Systems

• Metadata
 – Minimum: Table and Field Definitions, Field Valid Values and Definitions
 – Extra: Valid Value Timing and Relationship Data
• Provenance
 – Minimum: System of Origin/Collection and Contact
 – Extra: Intermediate Storage Systems and Contacts
 – Extra +: Transformations Used and Reasons Why
• Just starting with the Minimums will accomplish quite a bit